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Information amount is defined for values of reflexion intensities and Patterson peaks. How the informa- 
tion recovery is made during the procedures of structure analysis is exemplified by a real structure 
96R-SiC. The characteristic differences between the direct method, especially the statistical method, 
and the Patterson method are shown. In the usual statistical method the random distribution of atomic 
positions is assumed. However, limitations such as steric hindrance or molecular forms affect the 
intensity distribution. Influence due to this complexity is also included to some extent in the present 
example. From this standpoint, comments are made on several theoretical works on structure analysis. 

Introduction 

The information theory was first developed in com- 
munication engineering. Although the theory was later 
successfully applied to light optics, it has so far been 
used only in a few works in the field of X-ray structure 
analysis of crystals. The sampling theorem which is 
fundamental in the information theory was applied by 
Sayre (1952) to the phase problem. The familiar unit 
'bit '  devised in the information theory was used by 
Diamond (1963) for expressing the information amount 
included in each inequality relation among structure 
factors. The information amount included in an abso- 
lute value of a structure factor was discussed by one 
of the present authors in his review article on the phase 
problem (Hosoya, 1964). In the present paper, the no- 
tion of the information amount is defined in a more 
general form, and then applied to the information 
amount included in peaks of a Patterson function or 
of a vector set. Some numerical analyses are described 
for an existing model. 

The general idea will be presented using the unitary 
structure factor U. As is well known, the crystal struc- 
ture factor F(h) is expressed by the atomic scattering 
factor J) and the atomic coordinate rj of a j t h  atom 
as follows: 

F(h)=- r j~  exp(27rih, r j ) .  
J 

If each 39 is proportional to the average atomic scat- 
tering factor f as 

2=ad, 

all discussion on U(h) is also valid for F(h), where 
at is the atomic number of the j t h  atom. It is to be 
noted that the values of U corresponding to the recip- 
rocal points located too far from the origin of recip- 
rocal space cannot be observed. 

Now, two kinds of space, xj space and P space, are 
introduced as follows: xj space is defined by a set of 
J atomic coordinates (xb X2 . . . .  , X J )  and I h space is de- 
fined by a set of H observed values (I hl,lh2,. . . , I h H ) ,  

where I h =  I U(h)l 2 will be called the unitary intensity. 
The crystal structure analysis is eventually the proce- 
dure of finding out a point in xj space from the point 
in I h space given by the observations. 

In the present work, consideration is given as to how 
the information obtained from the observation of 1 I' 
reduced the super-volume, including the solution point, 
in xj space, and how the amount of information can 
be geometrically defined in a multi-dimensional space. 
A real structure, 96R-SiC, is discussed for which the 
dimension J of x~ space is 32, and the dimension H 
of I h space happens to be also 32. 

Definition of information amount 

At every stage when some information is given, a super- 
volume in x~ space containing points which are possible 
solutions should shrink to a more limited volume. Then 
the information amount obtained at each stage may 
be expressed as - l o g  W (Shannon, 1948), where W is 
the ratio of these two super-volumes before and after 
the shrinkage. When 2 is taken for the base of loga- 
rithms, the value of - l o g  W is expressed in 'bits'. 

The information amount can be defined for con- 
tinuous as well as discontinuous variables. In practical 
calculations, however, each variable can be dealt with 
as a quantity quantized in discrete levels. For instance, 
atomic fractional coordinates are usually expressed by 
2-3 decimal digits at an early stage of the analysis and 
then by 4-5 digits in a refining stage. In other words, 
the x~ space can be considered as a set of sampling 
points forming a lattice. As to the diffraction intensity, 
the value I h is also best taken as a quantity quantized 
in finite degrees of magnitude, especially because the 
measured values are always more or less affected by 
errors. 

Suppose that the super-volume including the solu- 
tion point is scanned in xj space. Corresponding to the 
change of I h due to such a scanning, let p(It]) be the 
probability that the value I t' has the intensity of the 
ith degree. Once an h reflexion has been known to have 
the value I~, it gives the information amount - l o g  
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[p(I~)], and therefdre the expected value for the infor- 
mation amount from the h reflexion should be 

H ( h ) = - Z "  p(I~)log[p(l~h)]. (1) 
i 

Expressions of this type will be used throughout the 
present work. 

To be more general, the information amount given 
by two reflexions is 

H(hl ,h2)= - ~ p(I~l,I~ 2) log[p(I~,I~2)] , (2) 
6 

using a joint probability which can be defined analo- 
gously to p(lf). Those formula relevant to more than 
two reflexions are also given in a similar way. The re- 
dundancy in the two reflexions is thus defined as 

R ( h l , h 2 ) = H ( h l ) + H ( h 2 ) - H ( h l , h 2 )  . (3) 

The redundancy serves as a measure of the informa- 
tion recovery. 

In the same way, the information amount given by 
a value at a point v of a vector set or a Patterson func- 
tion can be defined as 

H ( r ) =  - Z p(V~) log[p(V~)], (4) 
i 

where V[ is the value integrated over a small region 
specified by the position v in the Patterson space, and 
a suffix i is a degree of magnitude of this peak value. 

Example with 96R-SiC 

(1) The estimated number of  possible structures 
As is well known, the structure of SiC consists of a 

stacking of ABC layers, being essentially a one-dimen- 
sional structure. The structure factor of 96R-SiC can 
be expressed as 

F(hk l )= f (hk l ) .  U(I) ,  

where f (hk l )  is the structure factor for a chemical unit 
of SiC and U(I) is the unitary structure factor for the 
one-dimensional crystal: 

32 

U(I)= S exp(2z~ilz~/96), (zj=integer). 
j = l  

Because the approximate value of [f(hkl)l can be easily 
calculated, I U(/)I 2 can be obtained from the observed 
IF(hkl)l 2. It is to be noted here that the maximum value 
of I U(I)I in this example is normalized, for convenience, 
to be 32 instead of 1. 

The xj space for the 96R-SiC structure is, therefore, 
of 32 dimensions, in which only points with coordinates 
of multiples of 1/96 need to be taken into account. 

If there is no limitation at all for the coordinates zj, 
3296=2480___ 10144 kinds of structure may be possible. 
Actually, there are of course several limitations as fol- 
lows. 

(i) More than one layer cannot occupy an identical 
position. This limitation is expressed as 

z j -  zj, ~ 0 (mod 96), 

which makes possible structures decrease in number 
down to 

96!/(32! 64!)_ 2 84 .6  ~ 1 0  25 . 

(ii) Because of steric hindrance, a layer A cannot 
follow A, and this is the case with B and C, respectively. 
This limitation can be expressed as 

z s -  z~, ~- 1 (mod 96),  

which makes the possible number of structures de- 
crease to 64!/(32!) 2_ 26°'7 ~ 1018. 

(iii) The present structure has rhombohedral sym- 
metry, and this means that the structure can be speci- 
fied by an arrangement of ABC layers at 32 successive 
positions. This gives a limitation 

z~-  zj, ~ 32 (rood 96), 

which reduces the number of possible arrangements 
down to 232___ 109.6 . 

(iv) So far only permutation on a line has been con- 
sidered, but permutation on a circle should further be 
considered because of the periodic nature of crystals. 
Moreover, it is usually impossible to distinguish two 
arrangements on a circle with the reverse order. It is, 
therefore, sufficient to consider a necklace permuta- 
tion, which gives us possible structures of about 
232/(96 × 2 )_  224"4"~' 107.3 "~ 22,370,000 arrangements or 
24.4 bits. 

Those structures which have survived the above lim- 
itations (i)-(iv) will hereafter be called the big set. 

(v) We have, in addition, the experimental fact that 
all polytypes of SiC so far found have structures such 
that h does not follow h in terms of the Wyckoff-Ja- 
godzinski h-k notation, except for the 2H wurtzite 
type (Jagodzinski, 1949; Krishna & Verma, 1965). 
This limitation gives the condition that z~+~-zj<4 
when zfs are arranged in increasing order. More de- 
tails about these conditions expressed in z's have been 
described elsewhere (Yokonami, 1966). 

(vi) Among all kinds of necklace arrangements with 
96 beads, there are some arrangements with a perio- 
dicity of 48 or other shorter lengths. However, these 
were excluded in advance in an experimental analysis 
because of a definite periodicity of the crystal being 
specified from the very beginning. Exactly speaking, 
this limitation should duly be added at every stage of 
the limitations (i) to (v). For instance, the possible 
number of structures is reduced from 232 to 232--216 
when the present limitation is added to condition (v). 
As seen from this example, this modification is always 
numerically negligible. 

All arrangements of z /s  satisfying conditions (i) to 
(vi) in the above will later be referred to as the small 
set. The number of arrangements in the small set, 
which have been counted one by one on an electronic 
computer PC-2 (the commercial name is FACOM 202), 
is 25780 (corresponding to 14.65 bits). 

Summarizing the above, the information amount ob- 
tained by condition (i) is 480 -84 .6  ~ _ 395 bits, that by 
(ii) is 8 4 . 6 - 6 0 . 7 _  24 bits, that by (iii) is 6 0 . 7 - 3 2 _  29 

A C 23 - 2* 
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bits, that by (iv) is 32-24.4___ 8 and that by (v) is are integers ranging from 0 to 32 and its non-trivial 
24.4-14.65___ 10 bits. values are given at z = 2 , 3 , 4 , . . . , 4 8 .  The values of  I t 

and Vz at positions other than those shown above are 
(2) Preliminary considerations trivial because of either a periodic or a symmetrical 

The following considerations concern the estimation character. 
of the information amount included in the values of  
I t and Vz, which are used for the present one-dimen- (3) The distribution and information amount of D 
sional case, corresponding to I n and V r respectively. (a) The case when intensity has been graduated into 16 

There are more or less restrictions on the possible degrees 
values of I t and Vz. Namely, for the former we have The present graduation was adopted so that I t may 
13n=0 where n ~ 0  (mod 32) and 196n__= 1024. For the be divided with equal probability. This can be done 
latter, being a number o f j - j '  pairs satisfying z j - z / =  by classifying I t values into 16 degrees separated at 
z, we have V0=32, VI/96=0 [condition (ii)], and 3 2 x l n 1 6 / ( 1 6 - n ) ,  where n = 1 , 2 , 3  . . . .  ,15. Relative 
V32/96=0 [condition (iii)]. The value of I t is non- abundances for these 16 degrees of 1 Z obtained with 
negative and at its maximum 1024, and its non-trivial 5000 samples randomly chosen from the big set are 
values are given at 1= 1 , 4 , 7 , . . . , 9 4 .  The values of Vz listed in Table 1, and those obtained using all members 

Table 1. Frequency distribution of I(l) (on the big set) 

I(2) 0 1 2 5 4 5 6 7 8 9 i0 ll 12 15 14 15 
L 

1 124 122 107 102 87 85 74 65 50 49 40 55 25- 19 11 5 
4 141 156 114 105 90 80 72 59 51 '51 39 50 17 10 5 1 
9 155 158 129 ii0 104 79 75 61 45 55 28 22 i0 4 

i0 161 157 128 105 96 89 72 55 51 55 28 19 15 5 3 
15 155 156 126 115 i00 87 71 55 51 59 27 18 9 4 2 
16 67 299 194 154 155 49 25 52 lO 12 l 
19 150 117 ll5 104 90 92 70 64 58 48 58 52 20 15 5 
22 12o 112 107 105 94 88 74 68 57 50 4o 35 22 16 8 
25 114 ii0 104 86 88 72 68 65 59 54 46 44 35 25 18 7 
28 112 86 98 85 85 71 68 61 62 50 55 48 36 37 27 14 
51 81 81 85 77 78 69 67 64 62 61 50 48 49 46 45 54 
54 85 75 74 65 66 70 61 64 60 62 56 55 49 51 49 6O 
57 51 58 49 49 51 52 48 48 54 55 58 62 70 75 89 128 
40 51 54 59 ~ 47 47 55 25 82 24 75 59 65 80 96 198 
45 22 25 24 24 28 50 56 54 59 59 44 55 60 78 107 555 
46 22 24 20 22 25 28 29 54 52 54 57 44 57 79 I01 409 
49 18 16 19 22 25 24 27 29 50 50 40 40 50 64 98 460 
52 19 20 16 25 25 25 24 50 41 55' 45 54 47 74 lO5 417 
55 28 52 52 56 55 40 54 42 44 49 54 65 67 78 lO2 259 
58 45 41 45 46 46 48 46 51 58 56 65 55 67 72 95 160 
61 61 62 55 56 59 5~ 57 65 55 58 62 60 60 67 69 98 
6~ 89 87 158 124 a4 84 ~-% 115 45 47 58 29 45 50 
67 86 86 76 76 77 77 62 68 58 58 57 52 45 48 54 55 
70 115 lO1 lO0 94 82 79 72 60 60 48 48 45 54 29 17 i0 
75 108 105 99 92 89 85 74 66 56 54 42 41 56 28 14 5 
76 124 114 105 102 96 82 82 66 57 47 44 55 21 14 6 
79 140 156 125 104 95 80 74 60 55 42 55 50 14 6 2 
82 159 155 109 112 106 80 74 60 56 40 54 26 15 9 2 
85 171 142 114 117 89 82 68 62 45 55 27 24 i0 6 1 
88 171 126 116 112 88 104 59 60 54 51 51 17 15 7 5 
91 155 128 125 107 95 8% 71 65 47 45 57 51 16 8 4 1 
94 i15 115 98 104 90 89 68 68 65 51 44 55 26 20 i0 5 

Table 2. Frequency distribution of I(l) (on the small set) 

IIL) 0 1 2 5 4 5 6 7 8 9 10 11 12 15 1~ 15 
L 

I 11861 6079 2839 5025 1228 ~245 158 68 48 47 4 0 0 0 0 0 
4 10916 6912 5841 2095 1054 558 282 118 22 ) i 0 0 0 0 0 
7 10472 6657 4269 2285 1165 622 204 88 19 1 0 0 0 0 0 0 

i0 9895 6574 4117 2578 1410 723 324 112 44 3 0 0 0 0 0 0 
15 9208 6196 3814 2745 1597 921 662 541 155 83 41 i0 7 1 1 0 
16 4299 11649 0 4675 0 2826 0 1678 0 362 ll5 135 25 19 1 0 
19 ~674 5920 3491 3048 2514 2100 1768 1588 lOS1 785 505 353 165 36 4 0 
22 2~49 2426 2278 2162 2041 2224 1951 1786 1679 1744 1542 1241 I000 911 342 4 
25 1196 1549 1275 1217 1245 1415 1425 1426 1411 15~5 1626 1717 1817 1946 2515 2857 
28 65~ 5~5 625 749 710 728 827 807 llZo5 922 1150 1594 1556 2111 2952 8906 
51 801 759 770 827 869 896 977 1007 1059 i157 1249 1466 1714 1827 2750 7752 
54 1504 1215 1067 1077 1195 1151 1119 1255 1188 1257 1554 1476 1708 1985 2401 5094 
57 1152 1091 1209 1115 1258 1245 1522 1577 1595 1475 1550 1765 1868 2072 2445 3485 
40 698 2001 852 424 2994 265 1074 lO 5949 28 1478 2265 1214 2816 1985 3755 
43 979 941 1058 1064 i108 1085 i121 1220 1526 1575 1554 1591 1854 2088 26a6 4792 
46 856 795 820 994 899 945 i011 i011 1164 1285 1425 1558 1691 2066 2841 6a45 
49 856 722 805 878 971 954 995 1015 1089 1250 1428 1540 1700 2041 2900 6700 
52 1009 787 929 1050 1029 1087 1069 1205 1292 1549 1559 1571 1885 2178 2595 5428 
55 1109 1027 1107 1200 1217 1185 1295 1276 1597 1445 1589 1725 1780 2061 2565 5804 
58 1207 1055 1257 1098 1419 ii17 1576 1426 1551 1488 1509 1814 1870 2099 2225 5491 
61 1109 1057 i041 1065 1141 1155 1208 1262 15t~4 ia45 1596 1759 18~2 2084 2487 4209 
64 954 957 0 1689 0 1496 797 1425 806 2486 1058 1059 2155 1464 2717 6759 
67 605 615 592 671 661 750 774 852 958 951 1187 1299 1515 2017 2997 9598 
70 954 965 965 1089 1065 1079 1095 1258 1520 1551 1551 1557 1817 2150 2647 4941 
75 1985 1878 1855 1922 1866 1856 1782 1801 1775 1679 1658 1606 1479 1281 1024 355 
76 5915 5562 5126 2757 2554 2252 1957 1647 1295 1049 821 628 571 86 0 0 
79 5101 7@08 5518 2554 2000 2274 1072 819 557 507 187 150 58 15 2 0 
82 8628 6997 2642 5050 1957 685 722 680 145 iIi 165 15 24 2 1 0 
85 9605 6465 4175 2561 1558 815 566 192 46 14 5 0 0 0 0 0 
88 10782 6066 4165 2525 1225 749 172 75 25 2 0 0 0 0 0 0 
91 10998 6585 5897 2216 1202 548 215 81 29 8 1 0 0 0 0 0 
94 lll05 6859 4015 1791 829 575 449 151 25 2 2 1 0 0 0 0 
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of  the small  set are listed in Table 2. The informat ion 
amount  H(I) included in I t for all members  of  each 
set calculated by use of formula  (1) is listed in Table 3. 
The simultaneous distr ibution of  I t~ and I t2 has been 
calculated for several pairs of  l 1 and 12 reflexions; then 
the informat ion amount  H(I 1,12) [formula (2)] and the 
redundancy R(ll,12) [formula (3)] have also been cal- 
culated. Representative pairs which may be expected 
to have a heavy correlation are those with 11:12= 1:2 
and / 2 = 1 1 + 3  (neighbouring reflexions). Some other 
pairs which may not be expected to have even a slight 
correlation were also chosen for comparison.  Accord- 
ing to the result shown in Table 4, correlation can 
hardly  be found except for a pair of  reflexions with 
11 = 16 and 12=32  which are two larger available di- 
visors of  96. 

The value of  H(I) averaged over 32 l values is 3.6 
and 3.2 bits respectively for the big set and for the 
small  set. This value multiplied by the number  of re- 
flexions is far more than 24.4 and 14.65 bits to be re- 
covered. It means that  there should exist much re- 
dundancy  in a whole set of  It 's.  F rom the fact that 
redundancy hardly exists between any pair of  It 's  
except 116 and 132, a large amount  of  redundancy 
should exist mostly among simultaneous distributions 
of three or more It's. 

Table 3. Information amount in the case 
when the intensity is classified hzto 16 degrees 

H(1) H(I) 
1 in the big set in the small set 
1 3.70 2.13 
4 3.58 2.16 
7 3-46 2.19 

10 3"48 2"29 
13 3.46 2.51 
16 2.74 2.18 
19 3"63 3.33 
22 3"67 3"81 
25 3"79 3"95 
28 3"87 3"36 
31 3.96 3"53 
34 3.98 3.82 
37 3"94 3"91 
40 3-76 3.53 
43 3"35 3"82 
46 3"17 3"66 
49 3"00 3"63 
52 3"12 3"76 
55 3.64 3.89 
58 3"88 3"92 
61 3"98 3"86 
64 3-66 3"47 
67 3"95 3.30 
70 3"81 3"80 
73 3"79 3"94 
76 3"66 3"49 
79 3"54 2.96 
82 3"55 2-58 
85 3.46 2"35 
88 3.48 2"21 
91 3.58 2"17 
94 3"72 2"15 

Mean 3-6 3"2 

Table 4. Information amount of  
simultaneous distribution of  I(1) 

The values of l, l '  such as 2, 5, 8 . . . . .  l=  (3n-  1) . . . .  correspond 
to 94, 91,88 . . . . .  (96-1) . . . .  in other tables, respectively. 

On the big set On the small set 
H(I) + H(I') H(I) + H(l') 

l l" H(l,l') -H(l,l') H(l,l') -H(l,/') 
1 2 7.36 0-05 
2 4 7.26 0.05 4.25 0.06 
4 8 7.02 0.04 4.36 0.01 
8 16 6-15 0-06 

16 32 5.81 0.58 5"27 0.38 
5 10 7.02 0.04 

10 20 7.10 0.05 
20 40 7.37 0.04 
40 80 6"34 0.15 

7 14 6-97 0.03 
14 28 7.38 0-04 
19 41 7.22 0-05 7.20 0.02 
34 37 7.88 0.05 7.70 0.03 

(b) The case when intensity has been divided into only 
two degrees, strong and weak 

In the previous section H(I) was found to be 3.6 
bits on average for the big set. Similar calculations 
gave H ( l ) = 2 . 7 ,  1.7 and 0-8 bits when the number  of  
degrees of intensity was reduced to 8, 4 and 2 respec- 
tively. As is to be expected, less redundancy is obtained 
when the intensity is specified with less accuracy. In 
other words, the better the accuracy of measurements,  
the easier the structure analysis because of  the more 
redundancy.  

If  the intensity is specified with less and less accuracy, 
the total informat ion given by 1Z's for all I finally does 
not reach the necessary information amount  required 
to solve the structure or at least to determine the struc- 
ture uniquely apart  from homometr ic  ones. In the 
present case where the intensity is specified by two 
degrees, a sum of  H(I) on l is 25.34 and 18.04 bits for 
the big set and the small set respectively. These figures 
are probably less than those figures, 24.5 and 14.65, 
to be recovered if  redundancy is subtracted. To speak 
in terms of  averages, the structure cannot  be deter- 
mined in this case. 

Actually, however, it is possible to determine the 
structure even in such a case, provided that the inten- 
sity distribution of reflexions has marked characteristics 
as seen in the example of  96R-SiC. This real structure 
(Tokonami,  1966) consists mostly of the 6H type with 
some 21R. The observed data classified into strong and 
weak show more or less disagreement with I t values 
calculated for every member  of the small set. The num- 
ber of  reflexions which showed such a discrepancy was 
counted by checking each member  of  the small set. 
The statistics of  all members  as regards the number  
of reflexions which showed a discrepancy is listed in 
Table 5. Fortunately only one structure was found to 
show no discrepancy, while the three next nearly sim- 
ilar structures already showed disagreement for two re- 
flexions. The majori ty of  members  showed discrep- 
ancies for 10 to 14 reflexions. Al though no survey was 



22 S T R U C T U R E  A N A L Y S I S  F R O M  A V I E W P O I N T  O F  I N F O R M A T I O N  T H E O R Y  

carried out for the big set, it seems probable that dis- amount H(z) [formula (4)] has also been calculated as 
crepancies may occur more frequently and that still in Table 7. Because the average amount of information 
only one member may show a complete coincidence, for peaks at 48 positions is 3-6, this value multiplied 

by 48 is much larger than the information amount to 
(4) A distribution of Vz and its information amount be recovered, which is about 25 bits. The simultaneous 

Using about 8000 samples randomly chosen from distribution of V2/96 and V3/96 at positions near the 
the big set, relative abundances of Vz values have been origin has been calculated as in Table 8. Because 
calculated as shown in Table 6 and the information H(2/96, 3/96)=5-22 bits and H(2/96)=2.71 and 

H(3/96)=  3.64 in Table 7, the amount of redundancy 
Table 5. Distribution of structures with various numbers between these two peaks is found to be 1.13 bits. In 
of discrepancies (on the small set, with two degrees oJ" the same way, R(2/96, 4/96)=0-61 and R(3/96, 4 /96)= 

intensity) 0.78. It may be interesting that these two V's are as 

Number of  discrelzanzies Number of structures 
0 1 
1 0 
2 3 
3 3 
4 13 
5 36 
6 101 
7 320 
8 756 
9 1811 

10 3208 
11 4429 
12 4839 
13 4411 
14 3110 
15 1627 
16 782 
17 250 
18 67 
19 10 
20 3 

21 - -32  0 

large as - 0 . 8 3  for a usual correlation coefficient, being 
different from the case of I a and 112. Such a big re- 
dundancy mainly comes from correlation between 
peaks at two positions. This fact seems consistent with 
the success in the systematic method of unravelling a 
periodic vector set using V values one by one from 
the one nearest to the origin (Tokonami & Hosoya, 
1965). In addition, H(z) values for the small set are 
shown in Table 9. 

Table 7. The information amount 
contained in Vz/96 (on the big set) 

z H(z )  

1 0.00 
2 2.71 
3 3"64 
4 4"01 
5 3-92 
6 4"05 
7 3-97 

Table 6. Relative distribution of Vz/96 
Vz/960 1 2 ) 4 5 6 7 8 9 i0 Ii 12 I~ i% 15 16 17 18 19 20 21 22 25 2~ 25 26 27 28 29 50 ~i ~2 

0 i000 
1 i000 
2 9 ~6 118 212 2~5 20) ii0 ~0 

9 2@ 52 81 97 118 130 12~ i01 8~ 6o, #5 ~2 12 12 7 
6 12 22 ~ 5~ 65 80 89 95 90 85 91 67 64 56 57 19 15 ~ 8 

5 2 12 18 ~5 61 71 85 87 105 102 i00 8~ 68 52 ~8 ~ 16 i~ 5 2 1 
6 ~ 8 20 ~5 51 61 76 87 96 96 89 80 66 61" ~7 o,2 21 25 9 7 1 
7 1 6 12 2~ ~2 56 7~ 85 98 96 91 92 81 71 52 38 32 22 ii 6 1 1 
8 2 ~ l~ 28 ~5 6~ 71 86 90 92 91 89 7~ 62 5~ ~0 ~ 21 l~ ~ i0 1 
9 ~ Ii 17 27 ~9 66 88 lO1 106 102 91 78 7~ 55 ~5 27 21 16 7 # 1 

lO l ~ 7 18 ~l ~l 51 6# 92 99 lO# 97 96 80 6) 51 ~4 26 l~ ii 2 
ii 1 6 i@ 22 55 64 92 I15 iii 112 106 8.5 66 ~9 36 28 19 l) i0 # .5 2 
12 1 ~ ii 17 27 ~ 55 71 8) lll 105 lOt* i00 78 67 48 25 22 9 8 2 
i~ ~ ii 20 ~7 55 80 104- 118 iii 108 92 81 5~ ~8 25 22 i~ 6 7 1 1 
l# 1 ~ 12 27 40 52 77 107 llO ll6 108 92 78 60 147 29 18 7 ~ l 
15 1 6 15 25 51 7~ lO) ll5 129 126 if2 91 60 ~2 20 12 6 l 
16 1 # l~ 28 46 7# i05 127 1#7 1~5 125 99 50 27 
17 1 ~ 9 25 148 70 lO0 122 141 l)l ll4 89 62 ~8 20 i0 # 2 
18 ~ ii 24- ~8 58 88 ii0 125 151 Ii0 104- 7~ 50 ~i 19 8 5 2 
19 1 1 ~ i~ )0 5O 77 I0) i12 i16 111. i0~ 81 68 a6 ~i 16 i) ~ ~ 1 
20 1 ~ i0 16 ~i ~ 70 92 i00 112 ii~ 98 92 7~ 50 ~5 21 15 6 ~ 1 1 
21 2 7 12 28 51 8~ 95 iii lll 102 96 78 66 ~7 ~8 22 17 8 7 ~ 1 1 
22 2 7 ll 2) ~6 50 71' 8) 99 106 ll2 106 87 67 50 ~) 20 ll 7 
2~ 1 7 18 27 ~ 66 91 106 118 108 ll2 8~ 68 ~7 ~2 25 15 8 7 1 2 
24- ) 6 lO 17 29 ~9 71 88 ll~ ll) 126 ll5 8~ 61 @l 26 16 ll 5 5 1 
25 1 2 5 16 28 ~0 60 84 i01 116 126 115 98 68 46 ~4 19 i@ 6 5 1 
26 l ~ 5 ll 21 ]57 58 82 106 120 ll6 107 89 7# 52 ~8 ~0 17 ii 5 # 1 
27 1 5 8 21 36 62 7~ 90 lO~ ll7 ll5 106 8~ 66 40 26 18 9 7 1 1 
28 1 I* 9 20 3@ 5~ 82 lO3 120 122 i08 9@ 77 58 44 22 16 ll 7 3 l 
29 1 ~ 7 16 25 44 75 99 lll ll8 15~ 108 8~ 6~ #i ~0 17 7 5 1 
)0 2 ii 25 57 88 ll5 i)2 l@) 12~ 96 6~ 54 ~9 2~ 9 5 2 1 l 
)l ll 1~7 #62 ~25 61 1 
)2 lO00 
~ 1 61 ~25 462 1~7 ii 

35 
36 
37 
38 
39 

~2 

a5 
o,6 

3 13 32 68 98 i~127 127 107 96 74 @3 29 17 l# 6 1 
1 2 6 I@ 25 37 59 8~ 99 iiI 123 105 97 84 59 42 22 13 3 1 

2 12 26 52 72 99 108 122 llO 102 80 66 49 35 19 15 9 6 5 1 l 
2 a 8 16 29 ~l 6~ 86 lO1 I14 ll6 106 8@ 65 52 42 22 20 8 6 1 
8 23 38 51 73 90 106 ll5 llO 98 76 65 50 33 22 ll 9 3 3 
2 3 ii 23 44 53 74 96 iii 104 102 89 7# 60 49 37 20 19 7 7 

9 lO 18 31 ~2 61 84 93 lll 109 96 87 76 60 #l 26 l~ I0 5 3 
2 5 13 31 ~9 71 87 94 i00 i01 99 86 67 59 ~0 31 15 17 .5 12 

3 8 13 20 26 41 54 72 89 lO~ 109 lO1 90 7@ 61 #7 34 19 12 6 4 1 
1 2 7 13 26 50 75 91 99 i0~ I04 84 8~ 66 54 35 32 17 19 4 12 1 6 
8 15 19 30 ~i 51 70 91 94 i09 99 89 78 69 44 30 20 13 7 4 1 
1 5 12 2) 56 43 70 77 9~ 93 lO1 86 85 69 60 39 32 17 20 5 ll 1 5 

5 i0 17 22 36 54 70 78 88 86 85 85 83 65 57 ~5 3~ 22 23 9 lO 2 2 
1 6 i0 23 33 ~ 48 61 68 77 83 81 74 69 63 62 @7 ~ 2@ 27 9 16 2 ii 

27 50 99 125 i~5 i~7 127 i03 7~ ~6 28 i~ 
1 

1 
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Table 7 (cont.) 

z H(z) 
8 4-03 
9 3"95 

10 3"96 
11 3"88 
12 3.91 
13 3.85 
14 3.80 
15 3"64 
16 3"38 
17 3-57 
18 3-67 
19 3.76 
20 3"84 
21 3.87 
22 3.87 
23 3"84 
24 3"80 
25 3.79 
26 3.83 
27 3"81 
28 3-80 
29 3.71 
30 3"57 
31 1-77 
32 0"00 
33 1.77 
34 3"58 
35 3-76 
36 3"79 
37 3.86 
38 3-86 
39 3-91 
40 3.91 
41 3"95 
42 3.98 
43 3"97 
44 3"99 
45 4"05 
46 4"13 
47 4.26 
48 3"38 

General conclusion expected from the above example 

As seen in (3a) and (4) in the previous section, a set 
of  I Z values has a stronger correlation than a set of  
Vz values has between their two respective members,  
while these sets should be equivalent in amoun t  of  

informat ion regarding the structure. This fact seems 
to be valid also in values of  I h and V r of  general crys- 
tals. In this connection, it should be noted that  the 
sampling points r ' s  for Vr need not be chosen more  
densely than required by the sampling theorem (Shan- 
non, 1948). In terms of  the more general case without  
the unitary intensity introduced, the correlation among  
intensities may  be very strong only with respect to 
many  reflexion terms, while in the Pat terson map  the 
values at a few restricted points already have a strong 
correlation. This may  reflect the fact that  the Pat terson 
method has been widely used while the direct method 
has been developed but  gradually.  In short, human  
brains full of  insight, though not good at dealing with 
multi-variables, can fully utilize the correlation at local 
regions included, for instance, in the minimum func- 
tion. On the contrary,  a computer  into which insight 
is not easy to introduce is a suitable tool for obtaining 
some useful information which can be deduced only 
f rom the simultaneous distribution of  many  variables. 

Comments on other studies from 
the present point of view 

The following discussion uses the concepts of  I h space 
and xj space. The x s space is a Euclidean metric space 
with the periodicity of  unity for each coordinate.  In 
what  follows, points which are identical with each 
other with modulus  1 are considered to be identical. 
I t  is often possible for more  than one point  in xj space 
to correspond to an identical crystal. These points are 
usually t ransformed from each other by permuting 
coordinate axes corresponding to a toms of  the same 
kind. Apa r t  f rom these points, which will also be 
considered to be identical, points corresponding to the 
identical I h, if any, are homometr ic  structures. 

Any  point  in xj space, even one corresponding to a 
fictional crystal, is always accompanied by a point in 
I h space. On the other hand,  a point  in I h space 
does not always correspond even to a fictional crystal. 
To take a trivial example, a set of  I h values, some of  
which satisfy Ih>  1, apparent ly  does not  express any 

V3/96 0 1 
V2/96 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 2 18 
22 15 83 
24 36 103 
26 29 38 
28 6 5 
30 
32 

Table 8. Correlation between V2]96 and V3/96 
3 4 5 6 7 8 9 10 11 12 13 

1 6 24 
3 6 45 211 475 

6 56 188 453 680 575 
115 327 502 530 350 152 
216 323 252 150 59 6 
140 92 20 7 
39 7 1 

3 1 

1 
1 1 34 59 148 

87 246 306 320 162 
573 447 279 69 10 
313 150 24 3 
33 1 

1 

14 15 16 17 18 19 20 21 

2 1 1 
3 38 38 5 6 

104 79 30 1 1 
20 7 1 
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Table 9. The information amount 
contained in Vz/96 (on the small set) 

z H(z )  

1 0.00 
2 1"81 
3 1"81 
4 3"73 
5 2"11 
6 3"83 
7 3.92 
8 3"65 
9 3"73 

10 3"85 
11 3"76 
12 3"80 
13 3.74 
14 3"77 
15 3"76 
16 3.30 
17 3-81 
18 3"74 
19 3"72 
20 3.86 
21 3"77 
22 3"78 
23 3"80 
24 3"81 
25 3"72 
26 3-83 
27 3"87 
28 3"58 
29 1"81 
30 3"58 
31 2"09 
32 0-00 
33 2"09 
34 3.58 
35 1"81 
36 3.59 
37 3"86 
38 3.84 
39 3-72 
40 3-82 
41 3"82 
42 3"75 
43 3"86 
44 3-74 
45 3.90 
46 3"84 
47 3"74 
48 3"29 

realizable crystal. The set of all meaningful points in 
I h space, which will be denoted by M, cannot be out- 
side a super-cube with length 1 for each edge in this 
space. If a point in xj space is shifted along each of 
the J coordinate axes by an infinitesimal distance, a 
corresponding point in I h space shifts along each of J 
directions also by an infinitesimal distance. Thus any 
movement in x~ space can be mapped in a sub-space 
of J dimensions in I h space, and the whole xj space 
is mapped in I h space as a sub-space M of J dimensions. 

The extent to which the structure analysis has been 
well carried out is usually expressed by a parameter 
such as the R index or R factor, which corresponds 
to the distance between the observed point lobs and 
the calculated point leal in I h space. When the point 

lobs happens to belong to M, it is possible to make 
this distance zero. However, in general this would not 
happen. 

The sub-space M does not distribute uniformly in 
I n space, being dense in some regions and disperse 
elsewhere. Two non-equivalent points more or less 
distant from each other in xj space sometimes happen 
to have their mapping points very close to each other 
in I n space; these structures are pseudohomometric, 
and it is difficult to tell which point represents the true 
structure, when the observed point falls near these two 
points. In such a case, more accurate observed inten- 
sities are required to determine the structure. On the 
other hand, when the relevant point falls in the sparsely 
populated region, even less accurate measurements will 
enable us to distinguish the true structure from a nearly 
similar but false one. 

Suppose we plot in xj space the value of the distance 
of lea1 from the fixed point lobs in I n space. If observed 
data are good enough, the true structure will agree with 
the point which has the minimum distance. This multi- 
dimensional map may be called 'an R factor map' as 
used in the review articles (Hosoya, 1961, 1964). This 
idea seems to have been used in various investigations 
(for instance, Hosoya, 1958) and has extensively been 
studied by Milledge (1962). The R factor map with 
contour lines drawn may have numerous peaks and 
troughs, and thus the xj space may be divided into 
many regions, as it were, by a multi-dimensional net- 
work of watersheds. The number of these regions may 
be large but will certainly be far smaller than the num- 
ber of points to be considered in the xj space. Improve- 
ment of the Monte Carlo method of Vand & Niggli 
(1961) so as to make it practicable was effected only 
by introducing the optimal shift method (Niggli, Vand 
& Pepinsky, 1961), which is nothing but the Monte 
Carlo method for the above-mentioned regions. 

Karle & Hauptman (1964) used H '  terms which are 
beyond the range of the observed H terms, when they 
devised a method of refining the Patterson map. It may 
not be self-evident that it is allowable to use unob- 
served reflexion terms outside of the limiting sphere. 
However, this may be understood by the following 
considerations. When the projection onto a partial 
space with H dimensions is given, the sub-space M in 
I h space with H '  dimensions more or less restricts the 
coordinates in certain regions, and, therefore, the values 
of H ' - H  unobserved terms can be inferred to some 
extent. 

In the above discussion it has been assumed that the 
distribution of the points in xj space is uniform. But 
some regions in xj space are entirely prohibited, for 
instance, because of steric hindrance due to the finite 
size of atoms. This fact may be clearly seen in a short 
note by Goedkoop, MacGillavry & Pepinsky (1951). 
Moreover, such a non-uniformity comes from coordi- 
nation of atoms in covalent crystals, from Pauling's 
rules in ionic crystals or from the form of molecules 
in molecular crystals. In the example in the previous 
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chapter, 3296 points in x~ space were reduced to several 
tens of millions because of symmetry and steric hin- 
drance. A set of the observed lobs values is not arbi- 
trary but, as was pointed out in the above, more or 
less restricted. It is therefore favourable to take the 
weight of the points in xj space into consideration. The 
results on SiC in the previous chapter showed various 
expectation values for reflexion intensities. This comes 
from the non-uniformity in xj space, because both the 
big set and the small set include only those structures 
which satisfy certain limitations. 

In relation to this discussion, it should be mentioned 
here that Hauptman (1964) showed how to infer the 
shape of the molecule directly from the intensity dis- 
tribution without the information about phases. Con- 
versely, when the shape of a molecule or a chemical 
unit of a crystal is known, a kind of unitary intensity, 
or the ratio of the observed intensities and the square 
of an absolute value of the structure factor for the 
above-mentioned unit, is very helpful to reduce the 
number of parameters J. 

Let M '  denote the mapped points of x~ space limited 
by steric hindrance and other possible ififormation; 
then M '  is a subset of M and has more sparse distri- 
bution than M has in P space, and therefore the re- 
quirement of experimental accuracy of lobs for deter- 
mining the structure uniquely becomes less "severe. The 
extreme case is seen in the structure analygis of 96R- 
SiC (Tokonami, 1966), in which only the qualitative 
observed values were used; on modification so as to 
make the structure point fall on M ' ,  utilizing certain 
algebraic characters found in the Patterson function, 

the unique solution was obtained. In usual crystal 
analyses, it often happens that a few reflexions are 
considered to be subject to extinction effects and their 
intensity data are taken into account with small 
weights. This may be allowed from the viewpoint that 
only the points on M '  have meaning in I h space. 

The authors express their thanks to Prof. S. Miyake 
for his advice in improving the method of presentation 
of these concepts. 
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Pr6vision de quelques Images de Dislocations par Transmission des Rayons X 
(Cas de Laue sym~trique) 

PaR DANIEL TAUPIN 

Centre de Calcul Numdrique, Laboratoire de Physique Thdorique et Hautes Energies, 
Facult~ des Sciences, 91-Orsay (Seine et Oise), France 

(Re~:u le 12 octobre 1966) 

The author's dynamical theory of the diffraction of Xrays by distorted crystals is applied to the computa- 
tion of the images obtained in the Laue case (transmission) when a single dislocation is contained in an 
otherwise perfect crystal. Some results which have been obtained for various orientations of the Burgers 
vector are presented: dislocation far from the upper surface (entry), the width of the incident beam 
being infinite; dislocation in the vicinity of the upper surface, the width of the incident beam being 
infinite; dislocation in the vicinity of the upper surface, the incident beam being very narrow. The 
results are in good agreement with topographs published by different authors. 

Dans un pr6c6dent travail (Taupin, 1964a, b) nous 
avons montr6 comment, ~t partir des 6quations de 
Maxwell, on pouvait 6tendre la th6orie dynamique, 
maintenant devenue classique, de la diffraction des ray- 

ons X par les cristaux parfaits au cas off les cristaux com- 
portaient des d6fauts ou d&ormations 61astiques, sans 
toutefois atre limit6 5. l 'approximation en colonne 
comme dans la th6orie de Howie & Whelan (1961, 


